Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Zhongguo Jishui Paishui = China Water & Wastewater ; - (10):80, 2023.
Article in English | ProQuest Central | ID: covidwho-20234104

ABSTRACT

Health service station is a place in which close contacts with the COVID-19 and other key populations are centralized quarantined for medical observation.A newly built health service station is equipped with 4 700 beds and a supporting sewage treatment station with a designed treatment scale of2 200 m~3/d.The treatment process consists of enhanced biological treatment system,sewage virus disinfection and sterilization system,aerosol disinfection and sterilization system and sludge disinfection and sterilization system.After treatment,the effluent and waste gas can meet the limit specified in Discharge Standard of Water Pollutants for Medical Organization (GB 18466-2005).The average COD,NH3-N and SS in effluent are 14.53 mg/L,1.26 mg/L and 9.11 mg/L,respectively,and the average concentrations of H2S,NH3 and odor at the outlet are 0.01 mg/L,0.8 mg/L and 6.3,respectively.The sludge is disinfected regularly and then transported outside for disposal.This project can provide reference for sewage treatment design of emergency medical temporary isolation and observation facility and cabin hospital.

2.
Curr Med Chem ; 2022 Aug 02.
Article in English | MEDLINE | ID: covidwho-20234478

ABSTRACT

The World Health Organization (WHO) ranks antimicrobial resistance (AMR) and various pathogens among the top 10 health threats. It is estimated that by 2050, the number of human deaths due to AMR will reach 10 million annually. On the other hand, several infectious outbreaks such as SARS, H1N1 influenza, Ebola, Zika fever, and COVID-19 have severely affected human populations worldwide in the last 20 years. These recent global diseases have generated the need to monitor outbreaks of pathogens and AMR to establish effective public health strategies. This review presents AMR and pathogenicity associated with wastewater treatment plants (WWTP), focusing on Next Generation Sequencing (NGS) monitoring as a complementary system to clinical surveillance. In this regard, WWTP may be monitored at three main points. First, at the inlet (raw wastewater or influent) to identify a broad spectrum of AMR and pathogens contained in the excretions of residents served by sewer networks, with a specific spatio-temporal location. Second, at the effluent, to ensure the elimination of AMR and pathogens in the treated water, considering the rising demand for safe wastewater reuse. Third, in sewage sludge or biosolids, since their beneficial use or final disposal can represent a significant risk to public health. This review is divided into two sections to address the importance and implications of AMR and pathogen surveillance in wastewater and WWTP, based on NGS. The first section presents the fundamentals of surveillance techniques applied in WWTP (metataxonomics, metagenomics, functional metagenomics, metaviromics, and metatranscriptomics). Their scope and limitations are analyzed to show how microbiological and qPCR techniques complement NGS surveillance, overcoming its limitations. The second section discusses the contribution of 36 NGS research papers on WWTP surveillance, highlighting the current situation and perspectives. In both sections, research challenges and opportunities are presented.

3.
Appl Water Sci ; 13(6): 129, 2023.
Article in English | MEDLINE | ID: covidwho-2312746

ABSTRACT

The consumption of pharmaceuticals has rapidly increased on a global scale due to the serious increase in Covid-19, influenza and respiratuar sinsityal virus, which is called "triple epidemic" in the world. The use of non-prescription analgesic and anti-inflammatory drugs (AAIDs), especially paracetamol, is higher compared to pre-pandemic. This increased the AAIDs load discharged to the aqueous media through sewerage treatment plant (STP). Therefore, simple and effective treatment options for removing AAIDs from STP effluents are needed. The aim of the study was to remove AAIDs (paracetamol, acetylsalicylic acid, codeine, diclofenac, ibuprofen, indomethacin, ketoprofen, mefenamic acid, naproxen, and phenylbutazone) from STP effluents by nearly pure natural clay Na-montmorillonite. The Na-montmorillonite taken from the Ordu region in the northern part of Turkey. Surface area of the Na-montmorillonite is 99.58 m2/g and CEC is 92.40 meq/100 g. The removal efficiencies of AAIDs using Na-montmorillonite were between 82 ± 5% (ibuprofen) and 94 ± 4% (naproxen). Paracetamol was used as a model compound in kinetic and isotherm model studies. Freundlich isotherm model and the pseudo second order kinetic model were the best-fit using the obtained experimental data. Film diffusion governed its rate mechanism. The paracetamol adsorption capacity was acquired as 244 mg/g at 120 min contact time at pH 6.5 at 25 °C. With this study, it could be shown that montmorillonite can be used effectively to eliminate paracetamol from STP effluent. Natural clay can be used as a simple, inexpensive and effective adsorbent for removing AAIDs from STP effluents. Supplementary Information: The online version contains supplementary material available at 10.1007/s13201-023-01930-5.

4.
Environ Sci Pollut Res Int ; 2021 Jun 17.
Article in English | MEDLINE | ID: covidwho-2248756

ABSTRACT

The viral RNA of SARS-Coronavirus-2 is known to be contaminating municipal wastewater. We aimed to assess if COVID-19 disease is spreading through wastewater. We studied the amount of viral RNA in raw sewage and the efficiency of the sewage treatment to remove the virus. Sewage water was collected before and after the activated sludge process three times during summer 2020 from three different sewage treatment plants. The sewage treatment was efficient in removing SARS-CoV-2 viral RNA. Each sewage treatment plant gathered wastewater from one hospital, of which COVID-19 admissions were used to describe the level of disease occurrence in the area. The presence of SARS-CoV-2 viral RNA-specific target genes (N1, N2, and E) was confirmed using RT-qPCR analysis. However, hospital admission did not correlate significantly with viral RNA. Moreover, viral RNA loads were relatively low, suggesting that sewage might preserve viral RNA in a hot climate only for a short time.

5.
Architecture Civil Engineering Environment ; 15(2):177-186, 2022.
Article in English | Web of Science | ID: covidwho-2071036

ABSTRACT

The Covid-19 pandemia increased the attention of the world community to air biocontamination. Sewage treatment plants (STPs) generate a bioaerosol during different technological operations. Research aimed to estimate the range of bioaerosol emission from different technological objects of 5 small STPs. Such knowledge is very important for risk assessment, monitoring programs and pollution limitation. The sedimentation method was used for the detection of mesophiles, psychrophiles, Escherichia con, pigmented bacteria, Streptococcus faecalis, Pseudomonas fluorescens, and mold fungi. The highest level of psychrophiles and mold fungi (> 1000 cfu/m(3)) was detected in points located near activated sludge chambers, sludge thickening tanks, and secondary clarifiers. The mesophiles (>500 cfu/m(3)) and E. coli aren't a normal component of air microflora, but were detected in all measurement points, especially near a pomp station (inflow), grit, activated sludge, sludge thickening chambers. At the points located at the leeward, the number of microorganisms was higher than in the windward. The research results indicate the necessity of constant monitoring of the STP impact on the air quality.

6.
Water ; 14(16):2491, 2022.
Article in English | ProQuest Central | ID: covidwho-2024373

ABSTRACT

In 2014, Oxford Nanopore Technologies (ONT) introduced an affordable and portable sequencer called MinION. We reviewed emerging applications in water research and assessed progress made with this platform towards ubiquitous genetics. With >99% savings in upfront costs as compared to conventional platforms, the MinION put sequencing capacity into the hands of many researchers and enabled novel applications with diverse remits, including in countries without universal access to safe water and sanitation. However, to realize the MinION’s fabled portability, all the auxiliary equipment items for biomass concentration, genetic material extraction, cleanup, quantification, and sequencing library preparation also need to be lightweight and affordable. Only a few studies demonstrated fully portable workflows by using the MinION onboard a diving vessel, an oceanographic research ship, and at sewage treatment works. Lower nanopore sequencing read accuracy as compared to alternative platforms currently hinders MinION applications beyond research, and inclusion of positive and negative controls should become standard practice. ONT’s EPI2ME platform is a major step towards user-friendly bioinformatics. However, no consensus has yet emerged regarding the most appropriate bioinformatic pipeline, which hinders intercomparison of study results. Processing, storing, and interpreting large data sets remains a major challenge for ubiquitous genetics and democratizing sequencing applications.

7.
Frontiers in Environmental Science ; 10, 2022.
Article in English | Web of Science | ID: covidwho-2022687

ABSTRACT

Consumption of different pharmaceuticals has increased since the COVID-19 pandemic. Some health institutions worldwide approved the use of drugs such as ivermectin, hydroxychloroquine, azithromycin, dexamethasone, favipiravir, remdesivir, lopinavir-ritonavir, chloroquine, dexamethasone for the treatment of the virus. Once consumed by humans, these compounds are released in urine and faeces, ending up in wastewater and conducted to treatment plants or directly discharged without prior treatment into surface water and soil, with minimum values recorded between 7 ng/L and < 0.08 mu g/L for azithromycin and ivermectin respectively, as well as dexamethasone with 0.73 ng/L in surface water and an average of 50-60 ng/L for favipiravir. Their presence has numerous toxicological effects on aquatic and terrestrial species, influencing population decline and altering the growth of organisms. However, the environmental consequences of pharmaceuticals in the environment are poorly known, especially for antivirals studied in this article. This work aims to analyze the presence, treatment and ecotoxicity of drugs used in the pandemic COVID 19, mainly focusing on aquatic and terrestrial ecosystems since that is where they arrive through wastewater. Ecotoxicological effects on flora, fauna and humans are also analyzed. Once there, they persist in the environment causing severe ecological damage, developmental and growth disorders in animals and plants and, in many cases, even the death of species.

8.
Chinese Journal of Evidence-Based Medicine ; 22(8):932-947, 2022.
Article in Chinese | EMBASE | ID: covidwho-2006473

ABSTRACT

Objective To evaluate the evidence of the experience with medical sewage treatment procedures in medical institutions in China. Methods Databases including CNKI, WanFang Data, PubMed, Web of Science, and EBSCO were electronically searched to collect studies on the medical sewage treatment process, flow, and specifications in medical institutions in China. We used the quality evaluation system to classify and grade the experiences based on the principles and methods of evidence-based science and performed a descriptive analysis. Results After the SARS pandemic in 2003, China systematically established and standardized the technical criteria of medical sewage treatment and discharge. Moreover, a prevention system for the epidemic using medical sewage was constructed, which guaranteed that the quality of medical sewage treatment and discharge would meet the criteria and protect the citizens, and the technical specifications of medical sewage treatment would progress and increase strictly. At present, medical sewage treatment in medical institutions in China was based on mechanical and biological methods, and disinfection was mainly performed using chlorine and its compounds, ozone, and ultraviolet light. Conclusion The COVID-19 pandemic requires a higher quality of medical sewage treatment and discharge criteria for medical institutions in China. To meet these criteria, all medical institutions in China should check, replace, and update their old facilities;strengthen personnel training and effectively ensure the quality of medical sewage treatment.

9.
Indian Journal of Public Health Research and Development ; 13(3):19-23, 2022.
Article in English | EMBASE | ID: covidwho-1939752

ABSTRACT

COVID 19 PANDEMIC has stricken in multiple waves, crippling the nation with each strike. Attempts at curbing its spread has been focused on a few established modes of transmission. Current literature evidence suggests possibility of Feco-oral transmission, detection of viable virus in stools of covid infected individuals, viral shedding several weeks post recovery and potential persistence of viable virus in sewage. Guidelines and protocols laid down have not included this potentially dangerous mode of spread. Many countries including Australia, Finland etc have utilized waste water epidemiology as a tool in surveillance. This can be used as a warning signal for early detection and control. This review article proposes the addition of new guidelines in this spectre to aid in curbing the spread of pandemic as well as adopting sewage surveillance as a tool in primary prevention.

10.
Environmental Science and Technology Letters ; 2022.
Article in English | Scopus | ID: covidwho-1900401

ABSTRACT

Wastewater-based epidemiology using viral nucleic acids to predict community viral outbreaks has many challenges, including differences in viral shedding of infected individuals and interference from the wastewater matrix. In this study, we demonstrate that monitoring pharmaceutical residues in untreated sewage provides complementary information that correlates with future occurrences of viral outbreaks. We monitored 63 pharmaceutically active compounds, including antivirals used to treat COVID-19 and influenza and over-the-counter drugs commonly used to relieve the symptoms of infection. Weekly sampling was conducted at four municipal sewage treatment plants in Western New York. Residues of drugs associated with managing COVID-19 symptoms were detected, including azithromycin (1.99-5.00 μg/L), chloroquine (0.01-33.00 μg/L), hydroxychloroquine (0.05-30.54 μg/L), and lopinavir (13.75-181.20 μg/L). A significant correlation (p < 0.001) was observed between the total COVID-19-related drugs detected and the 5-day rolling averages of reported cases. Acetaminophen concentrations spiked approximately 2.5 weeks before a spike in SARS-CoV-2 RNA copies in all wastewater treatment plants sampled. The results suggest over-the-counter analgesic concentrations, in particular, acetaminophen in raw sewage to be used to complement viral RNA data as an early warning system for effective management of viral outbreaks at the community level. © 2022 American Chemical Society.

11.
Buildings ; 12(4):440, 2022.
Article in English | ProQuest Central | ID: covidwho-1809721

ABSTRACT

Public–private partnership (PPP) projects have been widely applied in infrastructure construction. Leveraging private capital is the key to promoting the high-quality development of PPP projects. This study examines the combined effect of seven factors determining private enterprises that participate in PPP and collects materials from 102 PPP sewage treatment projects to examine the causal configuration path of private enterprises participating in PPP (PEP3P) from an overall perspective by using necessary condition analysis (NCA) and fuzzy-set qualitative comparative analysis (fsQCA). The findings support the fact that any single antecedent condition is not a necessary condition for PEP3P and is instead the combined effect of different factors that commonly form the diversified causal configuration paths of PEP3P. There is an obvious asymmetry between the configuration paths of the high participation and low participation of private enterprises. The enterprise technology level (ETL) and doing business (DB) are important internal driving forces and give external traction for PEP3P, while the enterprise credit level (ECL) and project investment scale (PIS) are important factors that restrict private enterprises from participating in PPP. This research fills a theoretical gap for PEP3P and can be applied to developing strategies for attracting private enterprises to participate in PPP.

12.
Revista de Educa....o Continuada em Medicina Veterin..ria e Zootecnia do CRMV SP ; 19(1), 2021.
Article in Portuguese | CAB Abstracts | ID: covidwho-1761718

ABSTRACT

The discovery, the commercial success, and the social use of ivermectin (IVM) were always recognized worldwide and gave the authors the Nobel price of Medicine/Physiology in 2015. It exclusive endectocide activity and safety, allowed its immediate integration in various health protocols to virtually all animal species, including humans. Even tough, the large-scale use of IVM in high frequency has caused the selection of resistant parasites. As IVM is a multitarget product, it is being repositioning to act against the SARS-CoV-2 virus. Environmental protection must also be considered, as the environment elimination of IVM may affect marine ecosystems and unassisted communities with low social development, with low access to safe water and to proper sewage systems.

13.
J Med Virol ; 94(4): 1315-1329, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1718396

ABSTRACT

In December 2019, novel severe acute respiratory syndrome coronavirus 2 (nSARS-CoV-2) virus outbreaks emerged from Wuhan, China, and spread all over the world, including India. Molecular diagnosis of Coronavirus Disease 2019 (COVID) 19 for densely and highly populated countries like India is time-consuming. A few reports have described the successful diagnosis of nSARS-CoV-2 virus from sewage and wastewater samples contaminated with fecal matter, suggesting the diagnosis of COVID 19 from the same to raise an alarm about the community transmission of virus for implementation of evacuation and lockdown strategies. So far, the association between the detection of virus and its concentration in stool samples with severity of the disease and the presence or absence of gastrointestinal symptoms have been rarely reported. We led the search utilizing multiple databases, specifically PubMed (Medline), EMBASE, and Google Scholar. We conducted a literature survey on gastrointestinal infection and the spread of this virus through fecal-oral transmission. Reports suggested that the existence and persistence of nSARS-CoV-2 in anal/rectal swabs and stool specimens for a longer period of time than in nasopharyngeal swabs provides a strong tenable outcome of gastrointestinal contamination and dissemination of this infection via potential fecal-oral transmission. This review may be helpful to conduct further studies to address the enteric involvement and excretion of nSARS-CoV-2 RNA in feces and control the community spread in both COVID-19 patients ahead of the onset of symptoms and in asymptomatic individuals through wastewater and sewage surveillance as an early indication of infection. The existence of the viral genome and active viral particle actively participate in genomic variations. Hence, we comprehended the enteric spread of different viruses amongst communities with special reference to nSARS-CoV-2.


Subject(s)
COVID-19/virology , Disease Transmission, Infectious , Gastrointestinal Diseases/virology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Disease Transmission, Infectious/prevention & control , Feces/virology , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/prevention & control , Gastrointestinal Tract/virology , Humans , India/epidemiology , SARS-CoV-2/genetics , Sewage/virology , Water Purification
14.
Revista Ambiente & Água ; 17(1):1-10, 2022.
Article in English | ProQuest Central | ID: covidwho-1701857

ABSTRACT

Environmental pollution is a worldwide concern, especially when caused by sewage dumping into water bodies. Many substances are present in industrial or domestic wastewater, causing contamination in superficial water collection. Surfactants stand out for being widely used both industrially and domestically. The use of detergents and many types of surfactants was increased during the Covid-19 pandemic period, a fact observed in the levels in the effluent sample analysis from a Sewage Treatment Plant (STP) - Vila City around 21 and 39 mg L-1 in this period. This work evaluated the surfactant concentrations in the primary and secondary treatment units of the Vila City STP, in the city of Paranavaí-PR.-Brazil. In addition, the use of a post-treatment by slow sand filtration and adsorption by activated carbon produced from spent coffee grounds in the complementary removal of surfactants was proposed. A mixed bed with sand and activated carbon columns was made on a pilot scale, and filtration/adsorption runs were performed simulating slow filtration with rates of approximately 15 m3 m-2 day-1. The parameters used for the efficiency removal evaluation in a pilot plant run were: turbidity (NTU) and surfactant concentrations. The removal of surfactant concentrations was about 9% and 7% in the Upflow Anaerobic Sludge Bed reactors (UASB-RALF) and in the secondary treatment, respectively, at the STP - Vila City units. In the post-treatment proposed by filtration/adsorption, bed columns on a pilot scale plant obtained a reduction of approximately 94% in terms of turbidity (NTU) and 95% in terms of surfactant removal.Alternate :Poluiçâo ambiental é uma preocupaçâo mundial, especialmente causada por despejos de esgotos nos coleçâo hídrica. Diversas substancias compöem os despejos e residuos industriais e esgotos domésticos. Os surfactantes destacam-se por serem amplamente usados tanto industrialmente como domesticamente. O consumo de detergentes e diversos tipos de tensoativos foi incrementado durante o período de pandemia da Covid-19, fato observado nos teores de surfactantes no efluente das Estaçöes de Tratamento de Esgoto (ETE) - Vila City entre 21 e 39 mg L-1 neste período de tempo. Este trabalho avaliou as concentraçöes de surfactantes em diferentes etapas da ETE da Vila City, na cidade de Paranavaí, PR.- Brasil. Além disso, propôs-se a utilizaçao de um pós-tratamento por filtraçâo/adsorçâo por carvão ativado produzido a partir da borra de café na remoçao complementar dos surfactantes. Foram confeccionadas colunas de adsorçao com meio filtrante de areia e carvão em escala piloto e realizados ensaios de filtração/adsorção simulando filtração lenta com taxas de aproximadamente 15 m3 m-2 dia-1. Os parámetros utilizados na aval

15.
J Environ Manage ; 309: 114728, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1683294

ABSTRACT

Real-time evaluation of the fighting activities during a sudden unknown disaster like the COVID-19 pandemic is a critical challenge for control. This study demonstrates that the temporal variations of effluents from hospital sewage treatment facilities can be used as an effective indicator for such evaluation. Taking a typical infection-suffering city in China as an example, we found that there was an obvious decrease in effluent ammonia and COD concentrations in line with the start of city lockdown, and its temporal variations well indicated the major events happened during the pandemic control. Notably, the lagging period between the change point of effluent residual chlorine and the change points of COD and ammonia concentration coincided with a period in which there was a deficiency in local medical resources. In addition, the diurnal behavior of effluents from designated hospitals has varied significantly at different stages of the pandemic development. The effluent ammonia peaks shifted from daytime to nighttime after the outbreak of the COVID-19 pandemic, suggesting a high workload of the designated hospitals in fighting the rapidly emerging pandemic. This work well demonstrates the necessary for data integration at the wastewater-medical service nexus and highlights an unusual role of the effluents from hospital sewage treatment facilities in revealing the status of fighting the pandemic, which helps to control the pandemic.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Hospitals , Humans , Pandemics/prevention & control , SARS-CoV-2 , Sewage
16.
Pathogens ; 10(12)2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1572583

ABSTRACT

An outbreak of a new type of coronavirus pneumonia (COVID-19) began in Wuhan, Hubei Province, China, at the end of 2019, and it later spread to other areas of China and around the world. Taiwan reported the first confirmed case from an individual who returned from Wuhan, China, in January 2020 for Chinese New Year. Monitoring microbes in environmental sewage is an important epidemiological indicator, especially for pathogens that can be shed in feces such as poliovirus. We have conducted additional SARS-CoV-2 sewage testing since January 2020 using a well-established poliovirus environmental sewage surveillance system in Taiwan. Wastewater samples were collected from 11 sewage treatment plants from different parts of Taiwan twice a month for laboratory testing. By the end of July 2021, 397 wastewater specimens had been tested, and two samples were positive for SARS-CoV-2. These two wastewater samples were collected in the northern region of Taiwan from Taipei (site A) and New Taipei City (site C) at the beginning of June 2021. This result is consistent with the significant increase in confirmed COVID-19 cases observed in the same period of time. As the pandemic ebbed after June, the wastewater samples in these areas also tested negative for SARS-CoV-2 in July 2021.

17.
Toxins (Basel) ; 13(10)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1481004

ABSTRACT

Despite the awareness that work in the sewage treatment plant is associated with biological hazards, they have not been fully recognised so far. The research aims to comprehensively evaluate microbiological and toxicological hazards in the air and settled dust in workstations in a sewage treatment plant. The number of microorganisms in the air and settled dust was determined using the culture method and the diversity was evaluated using high-throughput sequencing. Endotoxin concentration was assessed with GC-MS (gas chromatography-mass spectrometry) while secondary metabolites with LC-MS/MS (liquid chromatography coupled to tandem mass spectrometry). Moreover, cytotoxicity of settled dust against a human lung epithelial lung cell line was determined with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and UHPLC-Q-ToF-UHRMS (ultra-high-performance liquid chromatography-quadrupole time-of-flight ultrahigh-resolution mass spectrometry) analysis was performed to determine the source of cytotoxicity. The total dust concentration in the sewage treatment plant was low and ranged from 0.030 mg m-3 to 0.044 mg m-3. The highest microbiological contamination was observed in sludge thickening building and screenings storage. Three secondary metabolites were detected in the air and sixteen in the settled dust. They were dominated by compounds typical of lichen and plants and Aspergillus, Penicillium and Fusarium genera mould. The settled dust from the sludge thickening building revealed high cytotoxicity to human lung epithelial cells A-549 (IC50 = 6.98 after 72 h). This effect can be attributed to a biocidal compound-didecyldimethylammonium chloride (DDAC-C10) and seven toxic compounds: 4-hydroxynonenal, carbofuran, cerulenin, diethylphosphate, fenpropimorph, naphthalene and onchidal. The presence of DDAC-C10 and other biocidal substances in the sewage treatment plant environment may bring negative results for biological sewage treatment and the natural environment in the future and contribute to microorganisms' increasing antibiotics resistance. Therefore, the concentration of antibiotics, pesticides and disinfectants in sewage treatment plant workstations should be monitored.


Subject(s)
Aerosols/analysis , Dust/analysis , Occupational Exposure/analysis , Waste Disposal, Fluid , Aerosols/toxicity , Air Microbiology , Cell Line , Disinfectants/analysis , Endotoxins/analysis , Environmental Monitoring , Humans , Sewage/chemistry , Sewage/microbiology , Water Purification
18.
Sci Total Environ ; 809: 151169, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1475056

ABSTRACT

Wastewater surveillance for SARS-CoV-2 RNA has been a successful indicator of COVID-19 outbreaks in populations prior to clinical testing. However, this has been mostly conducted in high-income countries, which means there is a dearth of performance investigations in low- and middle-income countries with different socio-economic settings. This study evaluated the applicability of SARS-CoV-2 RNA monitoring in wastewater (n = 132) to inform COVID-19 infection in the city of Bangkok, Thailand using CDC N1 and N2 RT-qPCR assays. Wastewater influents (n = 112) and effluents (n = 20) were collected from 19 centralized wastewater treatment plants (WWTPs) comprising four large, four medium, and 11 small WWTPs during seven sampling events from January to April 2021 prior to the third COVID-19 resurgence that was officially declared in April 2021. The CDC N1 assay showed higher detection rates and mostly lower Ct values than the CDC N2. SARS-CoV-2 RNA was first detected at the first event when new reported cases were low. Increased positive detection rates preceded an increase in the number of newly reported cases and increased over time with the reported infection incidence. Wastewater surveillance (both positive rates and viral loads) showed strongest correlation with daily new COVID-19 cases at 22-24 days lag (Spearman's Rho = 0.85-1.00). Large WWTPs (serving 432,000-580,000 of the population) exhibited similar trends of viral loads and new cases to those from all 19 WWTPs, emphasizing that routine monitoring of the four large WWTPs could provide sufficient information for the city-scale dynamics. Higher sampling frequency at fewer sites, i.e., at the four representative WWTPs, is therefore suggested especially during the subsiding period of the outbreak to indicate the prevalence of COVID-19 infection, acting as an early warning of COVID-19 resurgence.


Subject(s)
COVID-19 , Water Purification , Humans , RNA, Viral , SARS-CoV-2 , Thailand/epidemiology , Wastewater , Wastewater-Based Epidemiological Monitoring
19.
Environ Technol Innov ; 23: 101696, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1272414

ABSTRACT

Since COVID-19 outbreak, wastewater-based epidemiology (WBE) studies as surveillance system is becoming an emerging interest due to its functional advantage as a tool for early warning signal and to catalyze effective disease management strategies based on the community diagnosis. An attempt was made in this study to define and establish a methodological approach for conducting WBE studies in the framework of identifying/selection of surveillance sites, standardizing sampling policy, designing sampling protocols to improve sensitivity, adopting safety protocol, and interpreting the data. Data from hourly sampling indicated a peak in the viral RNA during the morning hours (6-9 am) when the all the domestic activities are maximum. The daily sampling and processing revealed the dynamic nature of infection spread among the population. The two sampling methods viz. grab, and composite showed a good correlation. Overall, this study establishes a structured protocol for performing WBE studies that could provide useful insights on the spread of the pandemic at a given point of time. Moreover, this framework could be extrapolated to monitor several other clinically relevant diseases. Following these guidelines, it is possible to achieve measurable and reliable SARS-CoV-2 RNA concentrations in wastewater infrastructure and therefore, provides a methodological basis for the establishment of a national surveillance system.

20.
Toxics ; 9(3)2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1143605

ABSTRACT

Adequate functioning of a sewage treatment plant (STP) is essential to protect the downstream aquatic environment (ECHA 2017), and information on the degradability of chemicals and their toxicity to activated sludge microorganisms is required. An environmental realistic higher tier test is a STP simulation test as described in OECD 303A (2001) which for nanoparticles can also be used to study their sorption behavior to activated sludge. However, information is limited on the influence of synthetic sewage on the microbial community of the activated sludge. A modified community can result in modifications of the sludge floccules affecting the sorption behavior. The main objective of our study was to show whether a representative microbial diversity remains under standardized test conditions as described in OECD 303A (2001) using synthetic sewage as influent. Furthermore, we investigated whether just considering the functional properties of a STP (elimination of dissolved organic carbon; nitrification), is sufficient for an assessment of gold nanoparticles (AuNPs) or whether the influence on microbial diversity also needs to be considered. AuNPs were used as a case study due to their rising medical applications and therefore increasing probability to reach the sewer and STP. The results can provide significant input for the interpretation of results from the regulatory point of view. To deliver these objectives, the general changes of the microbial population in activated sludge and its influence on the degradation activity (dissolved organic carbon (DOC) and inorganic nitrogen) using freshly collected sludge from the municipal STP in an artificial test system as a model STP in accordance with OECD 303A (2001) were assessed. Additionally, we evaluated the potential impact of AuNPs and its dispersant on the microbial composition and the overall impact on the function of the STP in terms of DOC degradation and nitrogen removal to observe if an assessment based on functional properties is sufficient. The bacteria composition in our study, evaluated at a class level, revealed commonly described environmental bacteria. Proteobacteria (ß, α, δ) accounted for more than 50% but also nitrifying bacteria as Nitrospira were present. Our results show that mainly within the first 7 days of an acclimatization phase by addition of synthetic sewage, the bacterial community changed. Even though AuNPs can have antibacterial properties, no adverse effects on the function and structure of the microorganisms in the STP could be detected at concentrations of increased modeled PEC values by a factor of about 10,000. Complementary to other metallic nanomaterials, gold nanomaterials also sorb to a large extent to the activated sludge. If activated sludge is used as fertilizer on agricultural land, gold nanoparticles can be introduced into soils. In this case, the effect on soil (micro)organisms must be investigated more closely, also taking into account the structural diversity.

SELECTION OF CITATIONS
SEARCH DETAIL